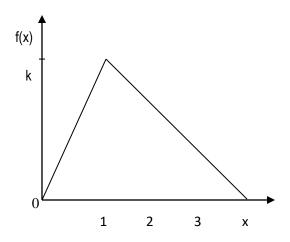
MERRYLAND HIGH SCHOOL – ENTEBBE S6 TERM 2020 HOLIDAY BREAK MATHEMATICS P2

- 1. Initially, a particle is at the origin and it is projected with a velocity of $\binom{a}{o}$. After t seconds the particle a is at a point with the position vector $\binom{30}{-10}$ m. Find the value of t and a.
- 2. a) By plotting graphs of y = x and y = 4 sin x on the same axes, show that the root of the equation x –4 sin x = 0 lies between 2 and 3.
 - b) Hence use NRM to find the root of the equation correct to 4 s.f.
- 3. a) For the set of 9 numbers; $\sum (x-x) \sum (x_x^-)^2 = 60 \text{ and } \sum x^2 = 285.$ Find the mean of the numbers.
 - b) If x^2 B in (8, 0.4), determine the value of P(x > 6).
 - The mean weight of 600 male students in college is 85kg with standard deviation of 9kg. The weights are normally distributed.
 - (i) Find the number of students whose weights lie in the range of 75kg to 95 kg.
 - (ii) If 62% of the students weigh more than P kg, find the value of P.
- 4. a) A car working with constant power P against a constant resistance has a maximum speed of V when travelling up a slope of 1 in 12, and a maximum speed of 3V on the level.
 - Obtain the expression in terms of P, V and g for the resistance and the mass of the car.
 - (ii) Show that the acceleration when the car is travelling down the slope at a speed of V is $\frac{g}{6}$.


- b) A 200 tone train can travel up a slope of 1 in 100 at a maximum speed of 10ms⁻¹. It has the same speed when free-wheeling down the slope.
- (i)Find the power of the train and the resistance at this speed.
- (ii) If the resistance is proportional to the square of the speed, find the maximum speed on the level.
- The heights (in cm) of senior six candidates in college were measured and recorded as in the frequency table below.

	Height	151 -	154 -	157 -	160 -	163 -	166 -
	(cm)	153	156	159	162	165	168
ı	Frequency	2	14	13	13	2	1

- a) Calculate the:
 - (i) Mean height
 - (ii) Standard deviation
 - (iii) Modal height
- b) Draw the cumulative frequency curve and use it to estimate the:
 - (i) Median height
 - (ii) Range of the height of the middle 60% of the candidates.
- 6. a) A particle performs a SHM of periods 4s and amplitude 2cm about a centre O. Find the time it takes the particle to travel from O to a point P, a distance $\sqrt{2} \ cm$ from O.
 - b) A particle moving with linear simple harmonic motion of magnitude 1.5m. The speed of the particle is $\sqrt{50}$ ms^{-1} when its displacement from the end point is 1m. Calculate its maximum acceleration.
 - c) A particle moves with SHM about a mean position O. When passing through two points which are 2m and 2.4m from O, the particle has speeds of 3ms⁻¹ and 1.4ms⁻¹

respectively. Find the amplitude of the motion and the greatest speed attained by the particle.

- 7. A body moving with acceleration e^{2t}i – 3 sin 2tj + 4 cos 2tk is initially located at the point (1, -2, 2)m and has a velocity of 4i – 2j + k ms⁻¹. Find the:
 - a) Speed of the body when $t = \frac{\pi}{4}s$.
 - b) Distance of the body from the origin at $t = \frac{\pi}{4}$.
- 8. a) The continuous random variable y is uniformly distributed in the interval a < y < b.
 The lower quartile is 5 and the upper quartile is 9. Find:
 - (i) The values of **a** and **b**.
 - (ii) P(6 < y < 7)
 - b) Given that x^2 R[32, 37] find;
 - (i) E9x)
 - (ii) Standard deviation
- 9. A random variable x has its p.d.f as shown below:

- (i) Find the value of k.
- (ii) Find the probability density function, f(x)
- (iii) Compute P ($|x 1| < \frac{1}{2}$).
- (iv) Prepare the c.d.f, F(x) and hence find the median of x.
- 10. a) A box contains equal number of red counters as yellow counters. A counter is taken from the box, its colour is noted then replaced. This is performed eight times in all. Calculate the probability that:
 - (i) Exactly three will be red.
 - (ii) At least one will be red.
 - (iii) More than four will be yellow.
 - b) A random variable x is such that $x^2B(10, P)$ where P > 0.5 and var(x) = 1.875. Find:
 - (i) The value of P
 - (ii) Ecx)
 - (iii) P(x = 2)

END